22 research outputs found

    Entrepreneurship, local development and the Green Region

    Get PDF
    The current financial crisis coupled with the pressure on the environment create the increasing need to deliver creative disruptions in the global economy if sustainable development is to be achieved. For this to happen, a regional environmental management system needs to be put together through the coordination of strategic local plans that may result in branding whole regions as “green”. This would have significant benefits to the local entreprises, especially if put in place through an entrepreneurial development action plan that would create an “entrpreneurial ecology”. This system would capture the sustainability potential offered by the dynamic interactions and innovation initiatives of market actors while reducing the exogenous energy and material flows of the economic system, and addressing efficiently the issue of sustainable consumption

    User-Centred Design of a Final Results Report for Participants in Multi-Sensor Personal Air Pollution Exposure Monitoring Campaigns

    Get PDF
    Using low-cost portable air quality (AQ) monitoring devices is a growing trend in personal exposure studies, enabling a higher spatio-temporal resolution and identifying acute exposure to high concentrations. Comprehension of the results by participants is not guaranteed in exposure studies. However, information on personal exposure is multiplex, which calls for participant involvement in information design to maximise communication output and comprehension. This study describes and proposes a model of a user-centred design (UCD) approach for preparing a final report for participants involved in a multi-sensor personal exposure monitoring study performed in seven cities within the EU Horizon 2020 ICARUS project. Using a combination of human-centred design (HCD), human-information interaction (HII) and design thinking approaches, we iteratively included participants in the framing and design of the final report. User needs were mapped using a survey (n = 82), and feedback on the draft report was obtained from a focus group (n = 5). User requirements were assessed and validated using a post-campaign survey (n = 31). The UCD research was conducted amongst participants in Ljubljana, Slovenia, and the results report was distributed among the participating cities across Europe. The feedback made it clear that the final report was well-received and helped participants better understand the influence of individual behaviours on personal exposure to air pollution

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.PARC project (grant no. 101057014) funded under the European Union’s Horizon Europe Research and Innovation program.info:eu-repo/semantics/publishedVersio

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    Funding Information: Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the “Safe and Efficient Chemistry by Design (SafeChem)” project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union’s Horizon Europe Research and Innovation program. Publisher Copyright: Copyright © 2023 Zare Jeddi, Galea, Viegas, Fantke, Louro, Theunis, Govarts, Denys, Fillol, Rambaud, Kolossa-Gehring, Santonen, van der Voet, Ghosh, Costa, Teixeira, Verhagen, Duca, Van Nieuwenhuyse, Jones, Sams, Sepai, Tranfo, Bakker, Palmen, van Klaveren, Scheepers, Paini, Canova, von Goetz, Katsonouri, Karakitsios, Sarigiannis, Bessems, Machera, Harrad and Hopf.The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the ‘Europe Regional Chapter of the International Society of Exposure Science’ (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.publishersversionpublishe

    Health Risk Assessment of Ortho-Toluidine Utilising Human Biomonitoring Data of Workers and the General Population

    No full text
    The aim of this work was to demonstrate how human biomonitoring (HBM) data can be used to assess cancer risks for workers and the general population. Ortho-toluidine, OT (CAS 95-53-4) is an aniline derivative which is an animal and human carcinogen and may cause methemoglobinemia. OT is used as a curing agent in epoxy resins and as intermediate in producing herbicides, dyes, and rubber chemicals. A risk assessment was performed for OT by using existing HBM studies. The urinary mass-balance methodology and generic exposure reconstruction PBPK modelling were both used for the estimation of the external intake levels corresponding to observed urinary levels. The external exposures were subsequently compared to cancer risk levels obtained from the evaluation by the Scientific Committee on Occupational Exposure Limits (SCOEL). It was estimated that workers exposed to OT have a cancer risk of 60 to 90:106 in the worst-case scenario (0.9 mg/L in urine). The exposure levels and cancer risk of OT in the general population were orders of magnitude lower when compared to workers. The difference between the output of urinary mass-balance method and the general PBPK model was approximately 30%. The external exposure levels calculated based on HBM data were below the binding occupational exposure level (0.5 mg/m3) set under the EU Carcinogens and Mutagens Directive

    Focus on exposure to air pollution and related health impacts

    No full text
    “The original publication is available at www.springerlink.com” Copyright Springer [Full text of this editorial is not available in the UHRA]Outdoor and indoor air pollution was recently identified as a key contributor to the environmental burden of disease in European countries (EBoDE Working Group 2011). Due to the time-activity profiles of contemporary lifestyles, most human exposure to both indoor and ambient air pollutants takes place indoors. Buildings partly protect occupants, but nevertheless outdoor air pollution penetrates enough to result in sustained and sometimes high daily exposures to certain air pollutants. Indoor air pollution sources, e.g. domestic heating, cigarette smoking and cooking devices, can also contribute significantly to the total personal exposure to gases and fine particles. These exposures are in addition to short-term exposures to pollutants generated in traffic and other more polluted microenvironments. The role of the indoor environment is highlighted, e.g. by the recent publication of WHO Guidelines for Indoor Air Quality (WHO 2010), and roughly half of the burden of disease caused by poor indoor air quality in European countries was associated with pollutants originating from outdoor air (de Oliveira Fernandes et al. 2009).Peer reviewe

    The use of structural alerts to avoid the toxicity of pharmaceuticals

    No full text
    In order to identify compounds with potential toxicity problems, particular attention is paid to structural alerts, which are high chemical reactivity molecular fragments or fragments that can be transformed via bioactivation by human enzymes into fragments with high chemical reactivity. The concept has been introduced in order to reduce the likelihood that future candidate substances as pharmaceuticals will have undesirable toxic effects. A significant proportion (∼78–86%) of drugs characterized by residual toxicity contain structural alerts; there is also evidence indicating the formation of active metabolites as a causal factor for the toxicity of 62–69% of these molecules. On the other hand, the pharmacological action of certain drugs depends on the formation of reactive metabolites. Detailed assessment of the potential for the formation of active metabolites is recommended to characterize a biologically active compound. Although many prescribed drugs frequently contain structural alerts and form reactive metabolites, the vast majority of these drugs are administered in low daily doses. Avoiding structural alerts has become almost a norm in new drug design. An in-depth review of the biochemical reactivity of these structural alerts for new drug candidates is critical from a safety point of view and is currently being monitored in the discovery of drugs. The chemical strategies applied to structural alerts in molecules to limit the toxicity are: • partial replacement or full replacement of the structural alert; • reduction of electronic density; • introduction of a structural element of metabolic interest (metabolic switching); • multiple approaches.Therefore, chemical intervention strategies to eliminate bioactivation are often interactive processes; their success depends largely on a close working relationship between drug chemists, pharmacologists and researchers in metabolic science. Keywords: Structural alerts, Active metabolites, Toxicit
    corecore